منابع مشابه
A note on the remainders of rectifiable spaces
In this paper, we mainly investigate how the generalized metrizability properties of the remainders affect the metrizability of rectifiable spaces, and how the character of the remainders affects the character and the size of a rectifiable space. Some results in [A. V. Arhangel'skii and J. Van Mill, On topological groups with a first-countable remainder, Topology Proc. 42 (2013...
متن کاملA note on superspecial and maximal curves
In this note we review a simple criterion, due to Ekedahl, for superspecial curves defined over finite fields.Using this we generalize and give some simple proofs for some well-known superspecial curves.
متن کاملa note on superspecial and maximal curves
in this note we review a simple criterion, due to ekedahl, for superspecial curves defined over finite fields.using this we generalize and give some simple proofs for some well-known superspecial curves.
متن کاملa note on the remainders of rectifiable spaces
in this paper, we mainly investigate how the generalized metrizability properties of the remainders affect the metrizability of rectifiable spaces, and how the character of the remainders affects the character and the size of a rectifiable space. some results in [a. v. arhangel'skii and j. van mill, on topological groups with a first-countable remainder, topology proc. 42 (2013...
متن کاملA note on Class A Bézier curves
The Class A Bézier curves presented in Farin (2006) were constructed by so-called Class A matrix, which are special matrices satisfying two appropriate conditions. The speciality of the Class A matrix causes the Class A Bézier to possess two properties, which are sufficient conditions for the proof of the curvature and torsion monotonicity. In this paper, we discover that, in Farin (2006), the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Edinburgh Mathematical Notes
سال: 1956
ISSN: 0950-1843,2051-2031
DOI: 10.1017/s0950184300000264